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We address the role of the nature of material disorder in determining the roughness of cracks, which grow
by damage nucleation and coalescence ahead of the crack tip. We highlight the role of quenched and annealed
disorders in relation to the length scales d and �c associated with the disorder and the damage nucleation,
respectively. In two related models, one with quenched disorder in which d��c, the other with annealed
disorder in which d��c, we find qualitatively different roughening properties for the resulting cracks in two
dimensions. The first model results in random cracks with an asymptotic roughening exponent ��0.5. The
second model shows correlated roughening with ��0.66. The reasons for the qualitative difference are ratio-
nalized and explained.
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I. INTRODUCTION

When cracks develop slowly via the nucleation of damage
ahead of the tip, the crack surfaces left behind appear to be
rough. A question of great interest is, what is the scaling
exponent that characterizes the roughening of such surfaces
and how can one relate the value of the exponent to the
physical phenomena that govern the crack propagation? For
crack surfaces in 2+1 dimensions the anisotropy of the frac-
ture experiment results in a number of scaling exponents,
making the attainment of a satisfactory theory quite difficult
�1�. On the other hand, for cracks in quasi-two-dimensional
samples, where the resulting surfaces are 1+1-dimensional
graphs �rupture lines�, the issues are clear at least in the sense
that there exists one well-defined scaling exponent. This is
conveniently defined by measuring y�x� where y is the height
of the graph above the Euclidean coordinate x that defines
the crack direction and then defining some measure of the
height fluctuations; for example,

h�r� � �max	y�x̃�
x�x̃�x+r − min	y�x̃�
x�x̃�x+r�x. �1�

For self-affine graphs the scaling exponent � is defined via
the scaling relation

h�r� � r�. �2�

It is well known that random graphs are consistent with �
=0.5, whereas positively �negatively� correlated graphs are
characterized by ��0.5 ���0.5�. Experiments on two-
dimensional samples tend to report scaling exponents in the
range ��0.65±0.04 �2–4�, indicating the existence of posi-
tive correlations between successive crack segments.

In recent work a model was proposed in 1+1 dimensions
for such slow crack propagation via damage nucleation and
coalescence ahead of the crack tip �5,6�. A crucial aspect of
this model is the existence of a typical length scale �c ahead
of the crack tip where damage nucleation can take place �7�.
A physical picture that might support such a scenario �though
definitely not a unique one� is that a small plastic zone of
linear dimension �c forms around the crack tip and the rel-
evant damage units involved in the process are plastic voids.
The idea is that since plastic deformation is typically associ-
ated with a limiting stress level �denoted the “yield stress”�

�Y, the purely linear elastic divergent stresses are cut off
such that they cannot reach a critical level required for the
nucleation of voids at the crack tip. It is claimed that such
critical levels of stress can be attained approximately near
the outer boundary of the plastic zone, i.e., the elastic-plastic
boundary. Whenever a void is nucleated in this region, it
evolves and eventually coalesces with the current crack tip to
form a new crack configuration. The crack then evolves by
successive applications of such nucleation and coalescence
events. References �5,6� demonstrated that the rupture lines
generated by this model are self-affine rough graphs with a
correlated scaling exponent ��0.66. Not only the value of
the roughness exponent is found to be significantly above the
random-walk exponent �=0.5, it also appears close to the
measured one �2–4�. The aim of this paper is to gain a deeper
understanding of the origin of this result.

An essential question asked in the context of any such
fracture growth model is how to represent and incorporate
the effect of material disorder. This issue is important since it
asks how small-scale features affect large-scale properties,
for example, the power-law scaling of Eq. �2� that indicates a
lack of characteristic length scale. To our knowledge there
had been no systematic study of the role of the nature of
material disorder in determining the roughness of cracks in
1+1 dimensions. Our aim here is to shed some light on this
issue by demonstrating that different views of material dis-
order and the associated length scales have a qualitative ef-
fect on the scaling properties of rupture lines. To this aim we
elaborate on the type of material disorder adopted in the
model described briefly above �referred to below as model A�
and present a new model �referred to below as model B� that
incorporates a different picture of material disorder. In model
B the disorder is quenched, and the stochasticity associated
with the material heterogeneities is fixed a priori in space
and time. In model A the disorder is “annealed” in the sense
that the stochasticity depends on the actual state of the sys-
tem at each time. Whenever the disorder has some spatial
characteristic scale we denote it by d and call it the “disorder
length” that should be compared to the previously introduced
length �c. Thus model A is characterized by annealed disor-
der and d��c, while model B is characterized by quenched
disorder and d��c. One of the points of this paper is that this
change in material disorder in model B is sufficient to de-
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stroy the positive correlations between successive crack seg-
ments observed in model A, changing the universality class
of the model and ending up with a random graph with an
asymptotic scaling exponent ��0.5.

In Sec. II we present in more detail model A and recall its
results, elaborating on the way in which material disorder is
incorporated into the model. We then explain the modifica-
tions leading to model B. In Sec. III we present the new
results for model B, compare them with model A, and clarify
the origin of the qualitative differences between them. Sec-
tion IV offers a summary and some concluding remarks.

II. CRACK PROPAGATION BY DAMAGE NUCLEATION
AND COALESCENCE

A. A nonperturbative calculation of the linear-elastic stress
fields

The mathematical difficulty in developing a theory for the
morphology of fracture surfaces is the necessity of calculat-
ing the linear-elastic stress fields for highly nonregular crack
paths. Typically, the stress conditions near the crack tip de-
pend nonlinearly on the crack path y�x�. Formally, one has to
solve the bi-Laplace equation for the Airy stress potential
��x ,y� �8�,

����x,y� = 0, �3�

in the infinite plane with traction-free boundary conditions
on the crack surfaces

�xn�s� = �yn�s� = 0. �4�

Here s is the arclength parametrization of the crack shape
and �in�s� denotes the stress acting in the ith direction on a
segment whose outward normal is the normal to the crack
face at s. The stress tensor field �ij is derivable from the Airy
stress potential ��x ,y� according to

�xx =
�2�

�y2 , �xy = −
�2�

�x�y
, �yy =

�2�

�x2 . �5�

The relevant experimental configuration for our purpose is
that of global mode I fracture in which a system containing
initially a straight crack in the x direction, is subjected to a
stress applied in the direction y, perpendicular to the crack.
At infinity we write the boundary conditions

�xx�	� = 0, �yy�	� = �	, �xy�	� = 0, �6�

where �	 is assumed to be constant.
Note that even though the initial configuration is that of a

straight crack, with material disorder the crack might deviate
from the straight path, attaining an arbitrary rough shape.
Solving the bi-Laplace equation with boundary conditions on
such an arbitrary boundary is quite a formidable task �9�.
Recently, we have developed a general method of solution
based on iterated conformal maps �10�. In this method, one
starts with a crack for which the conformal map from the
exterior of the unit circle to the exterior of the crack is
known. For example, in our case we start with a long straight
crack in the form of a mathematical branch cut, representing

the common experimental practice of introducing the sample
with a notch in order to localize the fracture process in a
controlled way. We can then grow the crack by little steps in
the desired directions, computing at all times the conformal
map from the exterior of the unit circle to the exterior of the
resulting crack. Having the conformal map makes the exact
calculation of the stress field straightforward in principle �11�
and highly affordable in practice. The details of the method
and its machine implementations are described in full detail
in Ref. �10�.

B. Model A

1. Damage nucleation

We consider a crack evolving under quasistatic conditions
by the nucleation and coalescence of damage ahead of the
crack tip. These damage elements can be voids or microc-
racks. We focus on situations where only one damage ele-
ment nucleates before the process of coalescence. This pro-
cess is associated with a length scale �c characteristic of the
distance of the damage element from the tip. A plausible
physical picture for such a process was proposed in Refs.
�5,6�. The idea is to identify �c with the size of the plastic
zone that develops near the crack tip due to the large stresses
concentrated there. More specifically, it was assumed that the
material flows plastically such as to reduce the stress field
near the crack tip to a level determined by the yield stress �Y.
Mathematically, the statement is that the distortional energy
J2� 1

2sijsij, with sij ��ij −
1
2Tr �
ij, satisfies the relation �12�

J2 = �Y
2 , �7�

inside the plastic zone. Outside this region, the stress field
behaves linear elastically. To find the outer boundary of the
plastic zone, which has a characteristic length �c, we use the
iterated conformal mapping solution of the linear-elastic
problem. We calculate the spatial curve for which Eq. �7� is
satisfied when approaching the crack tip. This curve defines
the elastic-plastic boundary. It was further shown �5,6� that
the hydrostatic tension P, defined as

P �
1

2
Tr � , �8�

attains a larger value near the elastic-plastic boundary than
inside the plastic zone. Under the physically plausible as-
sumption that damage will nucleate in regions where P ex-
ceeds some threshold value Pc, we expect damage to nucle-
ate near this boundary. As was explained before, after
damage nucleates it evolves such that it coalesces with the
tip, generating a new plastic zone under the influence of the
linear-elastic fields and so on. Note that in this physical in-
terpretation the damage elements are plastic voids and the
coalescence process is assumed plastic as well �for example,
necking of the ligament between the crack tip and the void�.
In fact, as we are not resolving the processes by which the
crack tip coalesces with the void ahead of it, we are using the
nucleation site only as a pointer for the advance of the crack.
Therefore, we are only interested in the roughness of the
crack on scales larger than �c.
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2. Growth rule and disorder

Naturally, the precise location of the nucleating damage
may be stochastic. To quantify this, assume that nucleation
occurs only at locations r in which the hydrostatic tension P
exceeds some threshold value Pc. Given the distribution P�r�
we consider a probability density function f(P�r�− Pc). One
has in mind an activation process for the nucleation of dam-
age, and this activation is more efficient when P�r�− Pc is
large. The probability for activation vanishes for P− Pc�0.
This activation may be due to stress corrosion in one case, or
due to another mechanism in another case, but the important
thing to note is that P�r� is a long-ranged functional of the
history of crack evolution, potentially leading to the long-
range correlations implied by ��0.5. The fact that damage
nucleates depending on the stress field �ij through P without
reference to any predetermined distribution of disorder im-
plies that the model is characterized by annealed disorder.
Note that the same formulation describes equally well a situ-
ation in which damage nucleates at points where the material
is weak, if the random weak points are dense enough such
that the typical scale d separating them is much smaller than
�c and that the distribution of nucleation thresholds is imma-
terial, characterized only by Pc. The relation d��c allows us
to take the continuum limit to define a probability distribu-
tion function. Model A was studied in Refs. �5,6�. In the
absence of precise knowledge of the activation process we
adopted reasonable probability distribution functions
f(P�r�− Pc) and demonstrated that the cracks generated by
the model were self-affine with �=0.66±0.03 irrespective of
the specific form of f(P�r�− Pc).

This model should be contrasted with the more common
mathematical representation of stochastic growth models via
a Langevin-type equation. In this case a deterministic equa-
tion is supplemented with an additive noise term whose sta-
tistics are independent of the deterministic part. In model A
the randomness cannot be represented by an additive inde-
pendent noise. We now turn to model B to test the influence
of the type of randomness employed on the roughness of
cracks.

C. Model B

In model B the crack is still assumed to propagate by the
nucleation and coalescence of damage ahead of its tip. The
linear-elastic stress fields are still calculated using the pow-
erful method of iterated conformal mapping described in
Sec. II A. The main difference between the two models
stems from a different way of incorporating material disorder
into the crack evolution process. In model B the disorder is
assumed to be quenched, represented by an a priori random
distribution of identical weak points. The random weak
points have a prescribed density such that the average dis-
tance between them is d. Physically, the weak points can be
realized by density fluctuations in an otherwise homoge-
neous material or by small particles that have a lower break-
ing threshold than the matrix in which they are embedded,
but do not change significantly the elastic properties of the
system. As in model A, the damage nucleation process near
the crack tip is characterized by a length scale �c. A second

point of departure from model A is that in this model we
assume d��c. This relation can be realized in different
physical situations. For example, �c can still be identified �as
in model A� with the linear dimension of the plastic zone,
where the independent scale d just happens to be of the order
of magnitude; in that case the damage elements can still be
plastic voids. Alternatively, if plastic processes are not domi-
nant, one could imagine the crack pinned to a weak point
until a microcrack nucleates at another weak point to propa-
gate the crack by coalescence. In this interpretation �c is by
definition of the order of d.

To complete the model we need a growth rule. As was
mentioned before, the weak points are assumed identical in
the sense that they have the same breaking threshold that is
significantly smaller than the ordinary material points �13�.
Since the disorder in this model is quenched, we can define a
deterministic growth rule stating that the crack advances to
the weak point where the hydrostatic tension P is maximal.
Note that even though the weak points are spread randomly
and independently of P, the selection of a weak point to be a
pointer for the next crack growth depends crucially on its
spatial proximity to the maximal hydrostatic tension P; the
closest weak point to the maximal hydrostatic tension P is
most likely to be chosen at each growth step. It is worthwhile
mentioning that if one could fix �c and decrease d such that
d /�c→0 �a limit that is not realized in our model where
d��c�, one would obtain the deterministic limit of the model
since the maximal hydrostatic tension P would almost inevi-
tably coincide with a weak point and the crack would ad-
vance almost always to the point of maximal hydrostatic
tension. Thus, the ratio d /�c is a measure of the width of the
statistical distribution in this model. Therefore, the discrete-
ness of the disorder is an important factor, but cannot fully
characterize the difference between the two models. To reit-
erate, the main differences between models A and B are as
follows:

�1� In model B only the random weak points are potential
sites for damage nucleation, while in model A every material
point is in principle liable to damage nucleation, depending
on the local hydrostatic tension P�r�.

�2� The growth rule in model B is deterministic, stating
that at each step the weak point in which the local hydro-
static tension P�r� is maximal will fail, while the growth rule
in model A is stochastic, where the probability to nucleate
damage depends on P�r�− Pc through an activation process,
where Pc is a material threshold.

�3� The intrinsic length scale �c in model B is determined
by the disorder length d, while the length scale �c in model A
is determined by the regularization of the linear-elastic sin-
gularity.

In the next section we analyze the new model and com-
pare its results to the results of model A.

III. RESULTS AND DISCUSSION

The quenched disorder in model B is realized by generat-
ing random pairs �xi ,yi� inside a large enough rectangle, such
that each spatial point in the rectangle has the same probabil-
ity to be occupied by a weak point. The number of random
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pairs is selected such that the average area per weak point is
�d2. The weak points are all assumed to have the same
breaking threshold that is significantly lower than the break-
ing thresholds of ordinary material points. This ensures that
the weak points act as pointers for the subsequent location of
the crack tip at each step of the growth. We have verified that
assigning a variable threshold picked from a Gaussian distri-
bution whose width is comparable to the average �i.e., not
too broad distributions� does not change the results presented
below. It should be noted that extremely heterogenous mate-
rials characterized by threshold distributions with power-law
tails are not considered here. Our picture applies to disor-
dered materials that are characterized by a uniform spatial
distribution of weak points with a typical breaking threshold.
We have simulated the model and obtained several crack
realizations, each of about 500 growth steps. An example of
a resulting crack is shown in Fig. 1.

We have measured the roughness of the cracks in the
model with both the variable bandwidth max-min method of
Eq. �1� and the variable bandwidth rms method �14�. In order
to avoid strong finite-size effects we have used the results of
Ref. �14� to calibrate our exponents for the different mea-
surement methods. This procedure was consistent in the
sense that the variance in the results obtained by the different
methods pointed to a single well-defined exponent according
to the finite-size effects predicted in Ref. �14�. An example of
a single roughness measurement using the variable band-
width max-min method of Eq. �1�, resulting in �=0.57, is
shown in Fig. 2. A similar measurement using the variable
bandwidth rms method �14� yielded �=0.51. For a crack
length of �500 steps in this range of exponents, the first
method is expected to overestimate the exponent, while the
latter is expected to underestimate it �14�; therefore our esti-
mation corresponds to the average of the two methods yield-
ing �=0.54. For the crack analyzed in Fig. 2, the disorder
length d equals 15, therefore all the scales below d must be
ignored and any relevant scaling behavior should be mea-
sured at higher scales. Indeed, the stable scaling range in the
figure appears above the disorder length, while the scaling at
lower scales is an artifact corresponding to the fact that the
crack is advanced by straight lines between the selected
weak points, contributing perfectly correlated small scale

segments. Finally, we averaged over different realizations,
obtaining �=0.53±0.03.

This result indicates that the cracks in model B exhibit
random roughness as the roughness exponent is not signifi-
cantly different from the random-walk exponent �=0.5. This
result is qualitatively different from the results of model A in
which �=0.66±0.03. At this point we must conclude that
even though the two models share many features and appar-
ently one should not expect dramatically different scaling
properties, the two models belong to different universality
classes. Model A exhibits correlated roughening, while
model B exhibits random roughening. We turn now to further
clarifying the origin of the qualitatively different results.

A. Common (and nontrivial) properties of models
A and B

The first thing to point out is that both models A and B
deviate from many models common in the literature in a way

FIG. 1. �Color online� A typical crack of 500
growth steps in arbitrary units. Note the differ-
ence in scales between the ordinate and the ab-
scissa. The inset shows a magnified segment of
the crack corresponding to the rectangle. The
overall scale of the ordinate of the inset plot is
100.
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FIG. 2. A log-log plot of the height fluctuations h�r� of Eq. �1�
as a function of the scale r. The straight line corresponds to
�=0.57. A similar measurement using the variable bandwidth rms
method �14� yielded �=0.51, therefore our estimation in this case is
�=0.54 �see the text for more details�.
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that might significantly affect the scaling properties. In ideal
linear elasticity, the stress tensor field �ij attains the follow-
ing asymptotic form approaching the crack tip:

�ij�r,�� =
KI

2�r
ij

I ��� +
KII

2�r
ij

II��� , �9�

where �r ,�� is a polar coordinates system located at the crack
tip, I and II are known universal functions, and KI and KII
are the stress intensity factors corresponding to opening
�mode I� and shearing �mode II� stresses �15�. Equation �9�
describes well the stress fields on a scale r relative to the
crack tip that is much smaller than any other length scale in
the problem. The mode II stress intensity factor KII is an
important quantity for the understanding of the roughness of
cracks since on the one hand it quantifies the near tip stress-
field asymmetry, leading to crack deflection, while on the
other hand it is a long-range functional of the crack shape
y�x�, possibly generating long-range correlations. The calcu-
lation of KII	y�x�
 is an extremely complicated mathematical
problem and in fact can be tackled analytically only pertur-
batively. Usually, models include KII	y�x�
 only to linear or-
der in y�x� �16�, hoping that higher-order terms are not rel-
evant for the scaling properties of cracks. It was already
claimed in Ref. �17� that higher-order terms are crucial for
the understanding of the roughness of cracks and might ex-
plain, at least partially, the failure of perturbative approaches
to derive the experimental value of the roughness exponent
�16�. The method of iterated conformal maps that was devel-
oped in Ref. �10� is nonperturbative in nature and therefore
seems more suitable for the study of the development of
crack roughness. Note that by specializing to first-order dy-
namics in y�x�, one essentially assumes that the local slopes
are small. This assumption is clearly violated in our model
�see, for example, the inset of Fig. 1�.

In both models A and B the crack propagates via the
nucleation and the coalescence of damage at a finite distance

�c ahead of its tip, essentially under the influence of a linear-
elastic stress field. Naturally, we cannot expect Eq. �9� to be
precise for r of the order of �c. In particular, the hydrostatic
tension P�r� should be sensitive to significant corrections to
the ideal behavior of Eq. �9�. We can expect that the stress
fields on a scale �c away from the tip in both models is
described by Eq. �9� with KI�KII plus additional, higher
order in r, terms. Note that on this scale the crack is not
straight anymore, but rather irregular. To verify this expecta-
tion we calculated the hydrostatic tension P�r ,�� on a con-
stant arc a distance �c from the tip and fitted it to the form

P��� =
KI

2��c
�cos��

2
� +

KII

KI
sin��

2
�� , �10�

predicted by Eq. �9� �15�. The results support our expecta-
tion, showing that indeed KI�KII and demonstrating the ex-
istence of an additional contribution of 10–15 % from other
nonuniversal terms at a distance �c away from the tip for
both models. An example of the result of such a fitting pro-
cedure is shown in Fig. 3.

The conclusion is that both models A and B, in contrast to
traditional models, are deep in the nonlinear regime �in terms
of the dependence of KII	y�x�
 on y�x�� and moreover, one
cannot neglect the influence of contributions on top of Eq.
�9�. Thus, not all the asymmetry near the crack tip is carried
by KII	y�x�
. We believe that this is an important aspect in
the success of model A in reproducing a correlated roughen-
ing, quantitatively close to the experimental observations. It
might also explain why models that used only KII and to
linear order in y�x� achieved scaling exponents different
from those observed in experiments �16,17�.

On the other hand, this cannot be the only factor explain-
ing the results of model A since this feature is common to
model B, which fails to produce correlated roughening.
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FIG. 3. �Color online� The hydrostatic tension P �see Eq. �8��, in
units of �	, as a function of � �in radians� at a fixed radius r=�c

�solid line� and a fit with KI=125 �arbitrary units�,
KII

KI
=−0.51

�dashed line�. The present data was taken from a crack after 300
growth steps, but it is representative.
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FIG. 4. �Color online� The average roughness exponent � as a
function of the number of growth steps N for model B. The decrease
towards a stationary state with ��0.5 is observed.
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B. The difference between the models stems from the
difference in randomness

We propose that the differences in randomness are respon-
sible for the different universality classes of models A and B.
Recall that the stochasticity in model B stems from the spa-
tial quenched distribution of weak points whereas the growth
rule itself is deterministic and that the quenched disorder
length d is of the order of the nucleation length �c. As a
result, there are only a few weak points available for damage
nucleation on a scale �c. In this situation the crack “selects”
a damage nucleation site out of a small number of possibili-
ties and in fact there is a sizable probability of having a
growth step chosen uncorrelated with the deterministic field
P that carries information of the history of the evolution. We
thus expect this randomization effect of uncorrelated growth
steps to accumulate gradually and reduce the correlated
roughening exponent observed in model A. The situation is
fundamentally different in model A where the probability of
having completely random growth steps is small. To support
this explanation we have measured the roughness exponent �
�see Eq. �2�� as a function of the crack length in terms of
growth steps. In Fig. 4 we show the dependence of � on the
number of growth steps.

It is observed that indeed the roughness exponent � de-
creases monotonically from ��0.625 to ��0.53, presum-
ably approaching asymptotically ��0.5. This finding is con-
sistent with the suggested explanation.

IV. SUMMARY

We have studied the role of disorder in generating a cor-
related roughening exponent in cracks of 1+1 dimensions.
The main conclusion is that adding additive material disorder
to linear elasticity is not sufficient to generate correlated
crack graphs with exponents larger than 0.5. This is due to
the destructive events or uncorrelated steps which accumu-
late and gradually produce a random graph. The generation
of correlated graphs ���0.5� is due to the correlations be-
tween the deterministic field �the hydrostatic pressure� and
the pdf carrying the randomness, like the annealed disorder
of model A. We reiterate the result concerning the magnitude
of the stress-intensity factors, and specifically KII. The mea-
surement of KII and higher-order terms of the hydrostatic
tension field tells us that linear approximations of KII, or the
principle of local symmetry, do not represent properly the
stress field at the vicinity of �c away from the rough crack
tip. Therefore, one can view this feature as an additional test
for models of crack growth, which produce the observed
correlated roughness.
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